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1. Introduction

Since their discovery more than a decade ago [1], D-branes have been playing a key role

in elucidating non-perturbative aspects of string theory. Phenomenologically, they have

also become an indispensable tool because D-branes can localize gauge and matter fields

and thus stable could in fact be where the Standard Model lives. Therefore if the brane

world idea is indeed realized in Nature, it is important to understand given a string com-

pactification what are the allowed stable (BPS or non-BPS) D-branes. While the charges

of BPS branes are quite easy to work out, it is in general not a simple task to enumerate

the complete spectrum of stable D-branes especially the non-BPS ones except for simple

backgrounds such as toroidal orbifolds [2 – 4] or orientifolds [5 – 8].1 As a result, models

whose complete D-brane spectrum has been derived so far are those with extended su-

persymmetry and not much is known about non-BPS branes in the phenomenologically

interesting case of D = 4, N = 1 supersymmetric backgrounds. In this paper, we shall

address this issue by investigating the spectrum of stable D-branes for some prototypical

N = 1 examples. In particular, we will focus on the T6/Z2 × Z2 orientifolds because in

addition to being simple N = 1 compactifications, models with realistic particle physics

features have also been constructed in this framework [11]. Moreover, a systematic com-

puter search for the statistics of supersymmetric D-brane models has recently been carried

out also for this particular closed string background [12, 13]. Thus, detailed studies of this

specific orientifold though undoubtedly limited may serve as a mini-platform for a more

ambitious string vacuum project [14].

The stability of a D-brane is typically due to the charges it carries. Although D-

branes were originally discovered as objects carrying Ramond-Ramond (RR) charges un-

der p-form supergravity fields, their charges are more properly classified by K-theory

[15, 16] instead of cohomology. An important difference between K-theory and coho-

mology charges arrises when considering discrete torsion (e.g., Z2) valued charges. In

fact, the existence of such K-theory torsion charges (sometimes referred to as K-theory

charges) is precisely the reason that certain non-BPS D-branes are stable [9]. Due to

the K-theoretical nature of D-brane charges, we expect there are in general some ad-

ditional discrete constraints on string constructions which are invisible in supergravity.

Analogously to the usual RR tadpole conditions, the total torsion charges must cancel

in a consistent string compactification. However, unlike the usual integral valued RR

charges, there are no supergravity fields to which the torsion charged D-branes are cou-

pled. Hence, the discrete constraints on the cancellation of torsion charges are invisi-

ble from the usual tadpole conditions obtained by factorization of one-loop open string

amplitudes. Nonetheless, these discrete K-theory constraints can be detected in an in-

direct way by introducing suitable D-brane probes [17]. From a probe brane point of

view, a manifestation of these discrete K-theory constraints is the requirement that there

should be an even number of Weyl fermions charged under the symplectic gauge group

on its worldvolume, for otherwise the worldvolume theory suffers from global anoma-

lies [18]. Moreover, it was recently shown in [19] that for some specific simple examples,

1Reviews and further references of the constructions of these D-brane spectra can be found in [9, 10].
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these discrete constraints from a probe brane analysis are seen to arise from the stan-

dard Dirac quantization conditions of 4-form fluxes when lifted to F-theory. Although the

probe brane approach provides a powerful way to determine the K-theory constraints,

it is not entirely clear however that all torsion charges can be obtained in this man-

ner.

We are particularly interested in these K-theory constraints because they have proven

to provide important non-trivial consistency conditions in building realistic D-brane models

from string theory [20, 21]. Although the K-theory constraints are automatically satisfied

for some simple models [22], it is certainly not the case in general. The K-theory constraints

of the T6/Z2 × Z2 orientifold that we will analyze in detail in this paper were obtained

in [20] using a probe brane approach. Here, we would like to determine these K-theory

constraints from a direct conformal field theory (CFT) calculation. It is important to

emphasize that these two approaches are to some extent complementary. The stability

of D-branes and more importantly their regions of stability are more apparent from the

CFT approach, while the relation to anomaly cancellations is more direct from a probe

brane perspective. By analyzing the one-loop amplitudes for the open strings that stretch

between these branes, as well as imposing consistency conditions for invariance under the

orientifold and orbifold generators, we can determine the spectrum of stable BPS and non-

BPS branes for a given model. The criteria for a non-BPS brane to be stable is the absence

of tachyonic modes in these open string amplitudes.

Our results find agreement with the K-theory constraints derived previously from a

probe brane argument [20]. As we shall see, the K-theory constraints in [20] do not con-

stitute the most general set of K-theory charges but nevertheless they are complete for

the setup considered in [20]. It will also become clear later from our spectrum of stable

non-BPS branes that for a more general setup (e.g., when one considers ”oblique” magnetic

fluxes on the worldvolumes of D-branes as in [23, 24], or D-branes that are stuck at orbifold

fixed points, or D-branes that are not space-filling in our four dimensional spacetime, etc),

then there are further K-theoretical constraints to be satisfied. In addition to the above

subtleties, there are actually 24 different types of Z2 × Z2 orientifolds corresponding to

different choices of discrete torsion between the orientifold and orbifold generators [25, 28].

The orientifold background considered in [20] (which is T-dual to [26] and [27]) is sim-

ply one of them. For completeness, we have also enumerated the spectra of torsion and

integrally charged D-branes for all other choices of discrete torsion. We expect these re-

sults will be useful for future work in building realistic models from more general Z2 × Z2

orientifolds.

Finally, another motivation for this work is to explore the implications of stable D-

branes in cosmology. In [29], it was suggested that stable D-branes that are wrapped

entirely in the compact directions (and thus appear pointlike to our 4-dimensional universe)

might be interesting cold dark matter candidates. In particular, the lightest D-particles

(LDPs) are stable because they are the lightest state in the spectrum carrying a specific

charge (either an integral or torsion charge). With the specific models at hand, we can

investigate in a concrete setting how robust is the existence of such cold dark matter

candidates.
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This paper is organized as follows. For completeness, we review in section 2 the

boundary state method that we use to compute the spectrum of stable D-brane. Readers

who are familiar with this technique can skip directly to the next section. Section 3

gives the specifics of the Z2 × Z2 orientifolds. To be concrete, we will be working in

the T-dual frame of Type IIB orientifolds with O3 and O7 planes. A table of orientifold

invariant states for two different types of orientifold projections, known as the hyper-

multiplet and the tensor-multiplet models, is presented. The effects of discrete torsion

are also discussed. To demonstrate explicitly that cancellation of K-theory charges are

additional constraints on top of the usual RR tadpole cancellations, we have listed the

tadpole conditions in section 4. For later comparison with results from the worldsheet

approach, a probe brane analysis of the K-theory constraints is also included for different

choices of discrete torsion. A detailed analysis of the torsion brane and integrally charged

brane spectrum is presented in section 5, along with a discussion of discrete torsion in the

model. Some details are relegated to the appendices. Appendix A contains the Klein Bottle,

Möbius Strip, and Annulus amplitudes for the models under consideration. Appendix B

shows the calculations used to determine the stability of the non-BPS branes. Appendix

C discusses the stability regions for the torsion charged branes. Appendix D contains the

non-BPS brane spectrum for a Z2 orientifold as well as that of a T-dual version of the

Z2 × Z2 orientifold under consideration. Finally, appendix E contains a table of integrally

charged D-matter candidates [29] for different choices of discrete torsion.

2. Boundary state formalism

In this section we give a brief and elementary review of the boundary state techniques2

used in our calculations. This method will allow us to determine orbifold and orientifold

invariant D-branes states (BPS and non-BPS) in the Type IIB model of [20], consisting of

O3 and O7 planes, that we want to consider. The results in the T-dual picture with O5

and O9 planes can be obtained by a simple T-duality.

The initial setup for a boundary state calculation is to have a closed string propagate

between two D-brane boundary states, which are evaluated as matrix elements. When

evaluated, this expression under open/closed string duality gives the familiar one loop

partition function for open strings that end on the D-branes. In addition, one has to

require that the boundary state be invariant under the closed string GSO projection (1
4 (1+

(−1)F )(1±(−1)F̃ ) where ∓ corresponds to IIA/IIB, respectively), as well as the orbifold or

orientifold projection. The ψ coordinates (as well as the ∂X coordinates) of the superstring

are used to define the boundary state using the condition3

ψµ
r + iη ˜ψµ

−r|η〉 = 0 µ = 1, . . . , p + 1

ψµ
r − iη ˜ψµ

−r|η〉 = 0 µ = p + 2, . . . , 8 (2.1)

where r is half-integer moded in the untwisted NSNS sector, and integer moded in the

untwisted RR sector. The boundary state |η〉 has two values, η = ±1, which correspond to

2See e.g. [30 – 32, 3, 33, 10] for a more thorough discussion of the boundary state method for D-branes.
3We are using the light cone gauge, with x0 and x9 as the light cone coordinates.
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the different spin structures. In the sectors where r is integer (such as the untwisted and

twisted RR sectors and the Z2 twisted NSNS sector) the ground state is degenerate, giving

rise to additional structure in the boundary state. In this case it is convenient to define

ψµ
± =

1√
2
(ψµ

0 ± iψ̃µ
0 ) , (2.2)

which satisfy the usual creation/annihinaltion operator anti-commutation relations,

{ψµ
±, ψν

±} = 0, {ψµ
+, ψν

−} = δµν . (2.3)

In terms of the ψ± operators the boundary conditions in the untwisted RR sector give

ψµ
η |η〉R−R = 0 µ = 1, . . . , p + 1

ψν
−η|η〉R−R = 0 ν = p + 2, . . . , 8 (2.4)

Throughout this paper we will be considering Z2 orbifold actions, and the corresponding

Z2-twisted sectors. We will take these Z2 actions to invert n spatial coordinates; the branes

we consider will stretch along s of the inverted directions and r + 1 un-inverted directions,

with r + s = p. Since the Z2 twisted NSNS sector is integer moded, we also define the zero

mode creation and annihilation operators in this sector, in terms of which the boundary

conditions imply

ψµ
η |η〉NS−NS,T = 0 µ = 9 − n, . . . , 8 − n + s

ψν
−η|η〉NS−NS,T = 0 ν = 9 − n + s, . . . , 8 (2.5)

where we have assumed the orbifold twist acts on n coordinates, among them s of them

are in Neumann directions and n − s are in Dirichlet directions. The coordinates in the

twisted RR sector behave in a similar manner, but only in the untwisted directions,

ψµ
η |η〉R−R,T = 0 µ = 1, . . . , r + 1

ψν
−η|η〉R−R,T = 0 ν = r + 2, . . . , 8 − n (2.6)

where we have r + 1 Neumann directions and 7 − n − r Dirichlet directions. Each of our

operators (GSO, orientifold, orbifold) can be written in terms of the ψ± operators, which

then act on the boundary states and impose a set of restrictions for the dimensions of the

invariant D-branes.

The action of ΩIn on the fermionic zero modes of a boundary state4 is given by

ΩIn|η〉 = κ

8∏

1

1 − 2ψi
0ψ̃

i
0√

2

8∏

i=9−n

(
√

2ψi
0)

8∏

i=9−n

(
√

2ψ̃i
0)|η〉 (2.7)

The first term on the right hand side (
∏8

1
1−2ψi

0ψ̃i
0√

2
) is the orientifold action acting on the

boundary state |η〉, and is written as a condition on the zero modes (i.e. when applied to

4See the appendix in [8] for a similar treatment of the Z2 orientifold [34, 35].
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eqn. (2.4), it takes ψ0 ←→ ψ̃0). The other two terms come from the In action, and are also

conditions on the zero modes. κ = ±1, and is a phase that allows us to keep our choice of

states that are even or odd under the projection.

Starting with the untwisted sector, our orientifold action is trivial acting on the NSNS

untwisted state, and on the RR untwisted state we have,

ΩIn|η〉R−R,U = κR−R,U i5−p+2c+n(n+2)|η〉 (2.8)

p refers to the number of dimensions filled by a D-brane in the theory, and c is the number

of coordinates covered by the In action that are also filled by the D-brane. κ is a phase

that is either ±1, and is determined by the action of the orientifold on the untwisted RR

sector.5

Next we will approach the twisted sector, which contains an inherent subtlety that

must be explained. When acting on a twisted sector, the In action does not necessarily

transform the same coordinates as the twisted boundary state (in our case the twisted

sectors created by our orbifold group of 3 Z2 generators). When this happens the final

result depends both on the n of the In and the n′ coordinates transformed by the twisted

boundary state. We will try to make this distinction clear in our calculations. For the

NSNS twisted sector we have,

ΩIn|η〉NS−NS,T = κNS−NS,T i2cc+ct+n(n+2)+ n′

2 |η〉 (2.9)

cc refers to the common filled directions between the n and n′ transformed coordinates. ct

is the number of filled directions in the twisted boundary state.

In the twisted RR sector we have

ΩIn|η〉R−R,T = κR−R,T i5+r+2cnc+n(n+2)−n′

2 |η〉 (2.10)

In this case cnc comes from filled compact directions on the T6 that are not common

between n and n′. r is the number of filled non-compact directions.

We shall now apply these general calculations to a IIB orientifold that contains D9

branes, which we will use in section 3 when we analyze D9 branes with magnetic flux.

Using the equations above, we take p = 9 and so have c = n and n′ = ct = 4.6 The results

become

ΩIn|η〉R−R,U = κR−R,U in(n+4)−4|η〉 (2.11)

ΩIn|η〉NS−NS,T = κNS−NS,T i6+2cc+n(n+2)|η〉 (2.12)

ΩIn|η〉R−R,T = κR−R,T i6+2cnc+n(n+2)|η〉 . (2.13)

The RR untwisted sector restricts n to be even, which is a result independent of p for

p odd. Thus we can have n = 0, 2, 4, 6. With n even, the twisted sector equations restrict

5In other words, it chooses the orientifold projection on the untwisted RR sector to be symplectic or

orthogonal.
6n′ = 4 is due to our Z2 generators, which are listed at the end of this section.
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cc and cnc to be either even or odd. If cc is even (odd), then cnc must also be even (odd)

relative to the orbifold projections because of the symmetry of the model. Choosing these

to be even, for n = 2 or 6 we arrive at the orientifold projection in [20]. For n = 0 or 4,

the orientifold projection would be the same as in [26]. For our model of D9 branes with

magnetic flux we will use the orientifold projection in [20], with n = 6.

Our model will also contain a Z2 ×Z2 orbifold with three projections, which we define

to cover the coordinates defined by the actions g1, g2, and g3, where the gi orbifold is

orthogonal to the ith T2:

g1 : (z1, z2, z3) → (z1,−z2,−z3), (2.14)

g2 : (z1, z2, z3) → (−z1, z2,−z3), (2.15)

g3 : (z1, z2, z3) → (−z1,−z2, z3) . (2.16)

The complex coordinate zi defines the complex coordinates7 on the ith T2.

3. The setup

Having shown how we use the boundary state method to determine invariance under the

orientifold projection, we will now apply these results to a specific model. After choosing

the orientifold projection in the next section, section 3.2 lists the requirements for invariance

in each of the untwisted and twisted NSNS and RR sectors. The section concludes with a

brief review of discrete torsion.

3.1 Model specifics

Now to the specifics of the model. Starting in Type IIA with the orientifold action in [27],

we T-dualize along the x3, x5, and x7 directions. The result in Type IIB is the orientifold

action ΩR, with R an orbifold projection that inverts all of the coordinates in the T6. Due

to T-duality the orientifold action picks up a factor of (−1)FL [36]. Pairing our orientifold

action with our orbifold generators we obtain one type of O3 and three types of O7 planes,

which wrap the coordinates in the internal directions:

ΩR(−1)FL : (z1, z2, z3) → (−z1,−z2,−z3), (3.1)

ΩRg1(−1)FL : (z1, z2, z3) → (−z1, z2, z3), (3.2)

ΩRg2(−1)FL : (z1, z2, z3) → (z1,−z2, z3), (3.3)

ΩRg3(−1)FL : (z1, z2, z3) → (z1, z2,−z3) . (3.4)

Finally we come to the branes themselves. The branes fill r + 1 coordinates in the uncom-

pactified space. Since each brane will be wrapped on a T2 in the compactified space, we

shall use si as the coordinates on the ith T2. Thus each si will be 0, 1, or 2 and a Dp brane

will have p = r +
∑3

1 si. From now on we will refer to the dimensions that the branes fill

using the notation (r; s1, s2, s3).

7The complex coordinates (z1, z2, z3) correspond to zn = x2n+1 + ix2n+2 where n = 1, 2, 3.
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3.2 Orientifold invariance

Now that we have chosen the orientifold projection of the model, we can use an adaptation

of equations (2.8), (2.9), and (2.10) to determine invariance of the D-brane states under the

GSO and orientifold projections. For Type IIB, the GSO projection requires odd values

of p for Dp-branes. Using the boundary state method the invariant orientifold states obey

the restrictions

ΩR(−1)FL |η〉R−R,U = κΩ
R−R,U i5−p|η〉R−R,U (3.5)

ΩR(−1)FL |η〉NS−NS,Tgi
= κΩ

NS−NS,T isj+sk+2|η〉NS−NS,Tgi
(3.6)

ΩR(−1)FL |η〉R−R,Tgi
= κΩ

R−R,T i5+r+si−2|η〉R−R,Tgi
(3.7)

Each of the κ is a choice of discrete torsion between the orientifold and the generators

of the orbifold group {1, g1, g2, g3}. We shall discuss discrete torsion more thoroughly in

the next subsection, but before we can continue, we need to introduce some terminology.

Although our results deal with 4D Z2 × Z2 orientifolds, we are going to borrow the terms

hyper-multiplet and tensor-multiplet, which are used when describing 6D Z2 orientifolds.

These terms refer to different choices of discrete torsion between the orientifold and orbifold

projections. In 6D Z2 orbifolds there are both twisted sector hyper- and tensor-multiplets.

One choice of discrete torsion between the orientifold projection and the twisted sector

keeps the hyper-multiplets [34, 35], while the other keeps tensor-multiplets [34, 37, 38].

This difference was clarified in [39] using the D-brane language, and in terms of group

cohomology in [28]. A similar choice of discrete torsion arises between the orientifold

projection and the orbifold generators in the 4D case. Because of this we have retained this

terminology and call our respective 4D models with those particular choices of orientifold

projection the hyper- and tensor-multiplet models.

Starting with the hyper-multiplet model [34, 35] in the T6/Z2 × Z2, the orientifold

and orbifold invariant states are

|B(r, s)〉NS-NS for all r and si (3.8)

|B(r, s)〉R-R





for r = −1, 3 and s1 = s2 = s3 = 0 or

for r = −1, 3 and si = 0, sj = sk = 2 or

for r = 1 and s1 = s2 = s3 = 2 or

for r = 1 and si = 2, sj = sk = 0 or

for r = 2 and s1 = s2 = s3 = 1

|B(r, s)〉NS-NS,Tgi
for all r and si and for sj = 0, sk = 2

|B(r, s)〉R-R,Tgi





for r = −1 and si = 2 and all sj, sk or

for r = 0 and si = 1 and all sj , sk or

for r = 1 and si = 0 and all sj , sk or

for r = 3 and si = 2 and all sj , sk

These choices are consistent with the closed string spectrum of the model and can be

determined by combining the results in [8] and [4].
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The tensor multiplet model has the same orientifold invariant boundary states in the

untwisted sectors as the hyper-multiplet model, with the twisted sectors invariant boundary

states given by

|B(r, s)〉NS-NS,Tgi

{
for all r and si and for sj = sk = 0 or

for all r and si and for sj = sk = 2
(3.9)

|B(r, s)〉R-R,Tgi





for r = −1 and si = 0 and all sj , sk or

for r = 1 and si = 2 and all sj, sk or

for r = 2 and si = 1 and all sj, sk or

for r = 3 and si = 0 and all sj, sk

Given the above restrictions on r and si we can construct four different types of inte-

grally charged branes:

• Fractional Branes: These are charged under untwisted and twisted RR forms. There

are two types of fractional branes, singly fractional branes coupling to the gi twisted

sector, which are of the form

|D(r, s)〉 = |B(r, s) >NS-NS + |B(r, s) >R-R (3.10)

+ |B(r, s) >NS − NS, Ti
+ |B(r, s) >R − R, Ti

or totally fractional branes, which are of the form

|D(r, s)〉 = |B(r, s) >NS-NS + |B(r, s) >R-R (3.11)

+

3∑

i=1

{|B(r, s) >NS − NS, Ti
+ |B(r, s) >R − R, Ti

}

The totally fractional branes only exist in the tensor multiplet model, and are the

(−1; 0, 0, 0), (3; 0, 0, 0), and (1; 2, 2, 2) branes. Singly fractional branes exist for (r, si)

= (−1, 2), (1, 0), (3, 2) and (sj, sk) = (2, 0), (0, 2) (hyper), or (r, si) = (−1, 0), (1, 2),

(3, 0) and (sj, sk) = (0, 0), (2, 2) (tensor). Note that this includes the tadpole can-

celling D7 branes.

• Bulk Branes: These are charged only under the untwisted RR forms, and are of the

form

|D(r, s)〉 = |B(r, s) >NS-NS + |B(r, s) >R-R . (3.12)

These exist for (r = (−1, 3), s = 0), and (r, s) = (1, 6) (hyper) or (r = 1; si = 0, sj =

sk = 1) and (r = 3; si = 2, sj = sk = 1) (tensor).

• Truncated Branes: These are charged only under the twisted RR forms. These exist

for the invariant states listed in equations (3.8) or (3.9), provided that no fractional

branes exist with the same r and si. We discuss them in more detail in section (5.2).
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• Stuck Branes: These branes are not charged under the twisted RR forms, but are

different from bulk branes in that they cannot move from the fixed points. Before

orientifolding such branes are a pair of fractional branes with opposite twisted charges;

the orientifold projection removes the moduli which allow the brane to move off the

fixed points. We will discuss them in section 5.

With the exception of the truncated branes, the above branes are BPS. The conditions

in (3.8) and (3.9) guarantee that the D-branes are both orbifold and orientifold invariant.

3.3 Discrete torsion

Discrete torsion in orbifolds [40, 41] has been studied extensively, especially in the Z2 ×Z2

case. We will be interested in determining the orbifold invariant boundary states, hence we

need to know the effects of discrete torsion on the D-brane sector. Here we will summarize

the results.8 Starting with the projection operator for the orbifold group

P =
1

|Γ|
∑

gi ε Γ

gi (3.13)

where Γ is the orbifold group that contains elements gi, and inserting it into the partition

function,

Z(q, q) =
1

|Γ|
∑

gi,gj ε Γ

ε(gi, gj)Z(q, q; gi, gj) (3.14)

The partition function can pick up a phase ε(gi, gj) between the elements in the orbifold

group. For the Z2 projections we consider, we have two choices for the phase: the trivial

result ε(gi, gj) = 1 or the non-trivial result ε(gi, gj) = 1 if gi = gj , and −1 otherwise. In

our case the orbifold group contains 4 elements: {1, g1, g2, g3}. Choosing discrete torsion

between the orbifold generators means that components of our partition function will be

modular invariant up to a phase definition.

Furthermore, there is a relationship between a IIA theory with (without) discrete

torsion and a IIB theory without (with) discrete torsion. This effect can be seen by noting

that we have two choices for defining the fermionic zero mode operators which make up

the orbifold elements gi,

gi =
∏

(
√

2ψi
0)

∏
(
√

2ψ̃i
0) (3.15)

ĝi =
∏

(2ψi
0ψ̃

i
0) (3.16)

where we sum over the directions acted on by the Z2 twists. These two definitions are

related by discrete torsion

ĝi|gj〉 = ε(gi, gj)gi|gj〉 (3.17)

8For more details, e.g. [4, 42, 3, 43 – 45].
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where ε(gi, gj) has the non-trivial definition. This is equivalent to saying that these two

definitions are related by T-duality. The theory that we define to have discrete torsion (gi

or ĝi) is ambiguous, but each theory is unique in that they have different Hodge numbers.

Initially we will look at a model with discrete torsion g1|g2〉 = +|g2〉, which corresponds

to a model with the Hodge numbers (h11, h21) = (51,3). The model with g1|g2〉 = −|g2〉
corresponds to a model with Hodge numbers (h11, h21) = (3,51).

4. RR tadpole conditions

In this section, we analyze in detail all the tadpole conditions arising in the Type IIB

orientifolds under consideration. The purpose of doing this is to illustrate that the K-

theory torsion charges, if uncancelled in a string model, do not show up as the usual tadpole

divergences and hence their cancellation impose additional constraints. The reason is that

unlike the usual homological RR-charges, there are no supergravity fields to which the

K-theory torsion charges are coupled. Therefore, the presence of these K-theory torsion

charges does not affect the asymptotics of the Klein bottle, Möbius strip, and Annulus

amplitudes in the closed string channel, which correspond to the exchanges of light closed

string fields. However, just like the usual RR charges, these K-theory torsion charges need

to be cancelled globally in a consistent model. We will derive such K-theory constraints for

the Z2 × Z2 orientifold using a probe brane approach in this section. The corresponding

derivation using a CFT approach will be presented in section 5.

4.1 Homological RR tadpoles

Calculating the RR tadpole for the BPS branes is similar to the T-dual case [26]. For

the purpose of comparison to the K-theory constraints that we will introduce in the next

subsection, here we list out the untwisted RR tadpole contribution. The full tadpole,

including the twisted contribution and cross terms between different orientifold planes

and branes is well known in the literature [26], and has also been calculated taking into

account factors of discrete torsion [47, 46]. For completeness, we summarize these results

in appendix A. The full amplitude, when considering all possible terms, can be written

as a single perfect square [47, 46]. We refer the readers to the aforementioned works for

a detailed discussion. Here, we focus on terms that contribute directly to the massless

untwisted tadpole. The untwisted tadpole is presented below, where the first line is the

Klein Bottle contribution, the second line comes from the Möbius Strip, and the final line

is from the induced D3 and D7 brane charge on the Annulus.

v4

∫
dl

{
32

(
1

v1v2v3
+

v1v2

v3
+

v2v3

v1
+

v1v3

v2

)

−2

(
κΩR

v1v2v3
Tr γT

Ω3,3γ
−1
Ω3,3 +

3∑

i=1

κΩRgi

vjvk

vi
Tr γT

Ω7i,7i
γ−1
Ω7i,7i

)

+
1

32

(
1

v1v2v3
Tr γ1,3Tr γ−1

1,3 +
3∑

i=1

vjvk

vi
Tr γ1,7i

Tr γ−1
1,7i

)
= 0 (4.1)
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where i 6= j 6= k, and the indices run from 1 to 3. We have also considered factors of discrete

torsion, where the κ factors refer to a choice of discrete torsion between the orientifold and

the untwisted RR boundary state (κΩR), and the orientifold and the orbifold generators

(κΩRgi
). The effects of discrete torsion on the D-brane spectrum will be discussed in more

detail in section 5.3. For tadpole cancellation we require

γΩ3,3 = +γT
Ω3,3 (4.2)

γΩ71,73
= +γT

Ω71,73
(4.3)

γΩ72,71
= +γT

Ω72,71
(4.4)

γΩ73,72
= +γT

Ω73,72
(4.5)

The final result is then

1

32

∫
dl

{
1

v1v2v3
(32κΩR − n3)

2 +

3∑

i=1

vjvk

vi
(32κΩRgi

− n7i
)2

}
= 0 (4.6)

This result can be written in terms of magnetic and wrapping numbers.9 The D-branes we

are working with have magnetic flux, which is quantized according to

mi
a

2π

∫

T
2

i

F i
a = ni

a (4.7)

mi
a is the number of times a D-brane wraps the ith T2, and ni

a is the integer units of flux

going through the ith T2. We can use these numbers to describe our D-branes. For example,

a D3 brane (r = 3, s = 0) has magnetic and wrapping numbers [(n1
a,m

1
a) × (n2

a,m
2
a) ×

(n3
a,m

3
a)] = [(1, 0) × (1, 0) × (1, 0)]. A D5 brane that wraps the first T2 would have

numbers [(n1
a,m

1
a) × (1, 0) × (1, 0)]. Our D-branes must be invariant under the orientifold

group, which means we also introduce image branes with magnetic and wrapping numbers

(ni
a,−mi

a). In addition, we shall consider a general setup with K stacks of Na D-branes.

The RR tadpole conditions are now related to cancellation of the O-plane charge by the

D-brane and its image, which we will not count separately,
∑

a

Na[Πa] + [ΠO3+O7] = 0 (4.8)

where have 64 O3 planes with −1/2 D3 brane charge and 4 O7i branes with −8 D7i charge

that need to be cancelled. The RR tadpole conditions for a general choice of discrete

torsion are
∑

α

Nαn1
αn2

αn3
α = 16κΩR (4.9)

∑

α

Nαn1
αm2

αm3
α = −16κΩRg1

(4.10)

∑

α

Nαm1
αn2

αm3
α = −16κΩRg2

(4.11)

∑

α

Nαm1
αm2

αn3
α = −16κΩRg3

(4.12)

(4.9) refers to the D3 brane, and (4.10), (4.11), (4.12) are the D7i branes.

9See [49] for a more detailed explanation.
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4.2 K-theoretical RR tadpoles from probe branes

Besides the homological RR tadpole conditions there are the K-theory torsion constraints

which can be found using D-brane probes. For example, one can introduce probe D3

(r = 3, s = 0) and D7 (r = 3, si = sj = 2, sk = 0) branes and demand that the number

of Weyl fermions on each of the probe brane worldvolume gauge theory to be even for

otherwise there are SU(2) D = 4 global gauge anomalies [18]. This is the approach

adopted in [17, 20, 22]

Though we shall prove our results from a CFT approach in the next section, for the

probe brane approach the K-theory constraints in the hyper-multiplet are

∑

α

Nαm1
αm2

αm3
α ∈ 4Z (4.13)

∑

α

Nαn1
αn2

αm3
α ∈ 4Z (4.14)

∑

α

Nαn1
αm2

αn3
α ∈ 4Z (4.15)

∑

α

Nαm1
αn2

αn3
α ∈ 4Z (4.16)

which requires an even number of non-BPS torsion charged D9 and D5 (r = 3, si = 2, sj =

sk = 0) branes. These torsion charged branes are non-BPS D-branes that couple to the

NSNS sector (untwisted and/or twisted) but not to RR fields. Nevertheless, they can be

stable because of the discrete torsion Z2 charge they carried [2 – 10]. See section 5.1 for a

more precise and detailed definition.

For different choices of discrete torsion, the probe brane approach gives the following

K-theory constraints for κ = 1,

∑

α

Nαm1
αm2

αm3
α ∈ 4Z

{
for κ + κΩRg1

+ κΩRg2
+ κΩRg3

=

2 or 4
(4.17)

∑

α

Nαmi
αnj

αnk
α ∈ 4Z





for κ + κΩR + κΩRgj
+ κΩRgk

=

2 or 4,

i 6= j 6= k

(4.18)

and for κ = −1,

∑

α

Nαm1
αm2

αm3
α ∈ 8Z for κ + κΩRg1

+ κΩRg2
+ κΩRg3

= 2 (4.19)

∑

α

Nαmi
αnj

αnk
α ∈ 8Z

{
for κ + κΩR + κΩRgj

+ κΩRgk
= 2

i 6= j 6= k
(4.20)

where there are different K-theory constraints for different choices of discrete torsion be-

tween the orbifold generators (κ), between the orientifold and the untwisted RR boundary

state (κΩR), and the orientifold and the orbifold generators (κΩRgj
). The gauge groups for
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the open string spectrum on the probe branes have been provided for different values of

discrete torsion in table 4. By comparing this result with eqns. (4.17), (4.18), we see that

the K-theory constraints exist when the probe brane gives USp gauge groups. In terms of

the magnetic and wrapping numbers of the branes, we will have a symplectic gauge group

on the brane when the charge class [Qa] of a D-brane is invariant under the ΩR action.

For open strings that begin and end a brane with a symplectic gauge group, the K-theory

constraints restrict the number of chiral fermions to be even.

As we shall see in the next section, these are not the entire set of possible K-theory

constraints, but the one relevant to our setup. The probe brane approach (at least for the

types of probe branes that have been introduced in the literature) gives us the constraints

for branes that fill the non-compact space (r = 3) and for backgrounds with non-oblique

flux. Our results in the next section show that there are additional torsion charged branes

that might show up in more general flux backgrounds.

5. Non-BPS branes

5.1 Torsion branes in the T6/(Z2 × Z2)

The first set of non-BPS branes we are going to analyze in the model are torsion branes.

In this section we consider only the hyper-multiplet model, and will consider other models

(the T-dual of the T6/Z2×Z2 orientifold as well as a T4/Z2 orientifold) in appendix D. The

effects of discrete torsion will be addressed in section 5.3. These non-BPS torsion branes

do not couple to the untwisted or twisted RR sector, i.e. there are no (−1)F factors in the

corresponding open string projection operators. Torsion branes have boundary states of

the form

|D(r, s)〉 = |B(r, s) >NS-NS (5.1)

or |D(r, s)〉 = |B(r, s) >NS-NS + εi |B(r, s) >NS − NS, Ti
i = 1, 2, or 3 (5.2)

or |D(r, s)〉 = |B(r, s) >NS-NS +

3∑

i=1

εi |B(r, s) >NS − NS, Ti
(5.3)

where each of the twisted boundary states is defined up to a phase εi = ±1 and ε3 = ε1ε2.

The open strings living on these branes are, respectively, invariant under the following

projection operators

(
1 + ΩR

2

)
(5.4)

(
1 + ΩR

2

)(
1 + gi

2

)
(5.5)

(
1 + ΩR

2

)(
1 + g1

2

)(
1 + g2

2

)
. (5.6)

Imposing the orientifold projection places restrictions on the allowed r and si values for

branes in equations (5.2) and (5.3). Specifically we see immediately, from equation (3.8)
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that no branes of the type given in eqn (5.3) are orientifold invariant. We are now ready

to compute the spectrum of stable (i.e. tachyon-free) branes.

The tachyon is extracted from the open string partition function, and an equation is

set up to cancel the tachyon between the Möbius strip and Annulus diagrams. Using this

technique, there are eight possible contributions to the tachyon: the untwisted Annulus

diagram, the twisted Annulus diagram (three contributions), the Möbius strip diagram for

a boundary state/O3 crosscap interaction, and the Möbius strip diagram for a boundary

state/O7i crosscap interaction (three contributions). See appendix B, eqns (B.1) - (B.3)

for the relevant calculations.

The condition for the tachyon to cancel is

24 n2 × (1 + εT1
+ εT2

+ εT3
)

−2n sin
(π

4
(r − s + 1)

)
− 2n sin

(π

4
(r + s − 2s3 − 3)

)

−2n sin
(π

4
(r + s − 2s1 − 3)

)
− 2n sin

(π

4
(r + s − 2s2 − 3)

)
= 0 (5.7)

where n is the normalization of the boundary state, and must be solved for when plugging

in values of r and s. For stable torsion branes n must be a non-zero positive number.

Because we cannot construct torsion branes that couple to all three twisted sectors and are

orientifold invariant, we have introduced the parameter εTi
to determine to which of the

twisted sectors the brane is coupled. εTi
= 1 if the brane couples to the Ti twisted NSNS

sector, and 0 otherwise.

It is at this point we would like to emphasize that eqns. (5.7) and (5.16) are conditions

for the existence of torsion charged D-branes of certain dimensions (i.e., values of r and

si) in a background with a specific choice of discrete torsion. The existence of such torsion

branes imply the discrete constraints discussed in Subsection 4.2. Hence, for a vaccum

configuration (which involves stacks of D-branes) to be consistent, we need to check that

the discrete conditions (4.17),(4.18) (for κ = 1) or (4.19), (4.20) (for κ = −1) are satisfied.

There are two types of torsion branes to consider: branes that couple to twisted NSNS

sectors and branes that couple only to the untwisted NSNS sectors. The former is of the

form in eqns. (5.2), which corresponds to the open string projection operator (5.5). The

latter are of the form in eqns. (5.1), and correspond to the projection operator (5.4).

The branes that couple to twisted NSNS sectors and for which the open string cancels

are listed in table 1. For a torsion brane to be invariant under all orbifold and orientifold

projection operators, the branes can only couple to one twisted sector Ti, where i refers

to the twisted sector generated by the gi orbifold action. It is easy to see that the branes

listed in table 1 are orbifold invariant versions of the torsion branes found in [8]. For

example the (3; 0, 2, 0)-brane coupling to the NSNSTgi sector is a g2 invariant combination

of (5, 2)-branes of [8].

Of the three types of branes listed in table 1, not all are consistent. Indeed, following

the discussion in [16] and [6], it was argued in [8] that the (4, 2)-branes are inconsistent

despite being tachyon-free. T-dualising the results in table 1, it is easy to see that the

branes with r = 2 or with si = 1 for some i, are T-dual to g1 × g2 orbifold invariant (4, 2)

branes of [8] and hence are inconsistent. Thus the D5 branes are the only allowed torsion
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Invariant Twisted States Ti (r; s1, s2, s3) n2

i = 1 (2; 0, 2, 0)
† 1

128

(2; 0, 0, 2)
† 1

128

(3; 0, 2, 0) 1
64

(3; 0, 0, 2) 1
64

(3; 1, 2, 0)
† 1

128

(3; 1, 0, 2)
† 1

128

i = 2 (2; 0, 0, 2)
† 1

128

(2; 2, 0, 0)
† 1

128

(3; 0, 0, 2) 1
64

(3; 2, 0, 0) 1
64

(3; 0, 1, 2)
† 1

128

(3; 2, 1, 0)
† 1

128

i = 3 (2; 0, 2, 0)
† 1

128

(2; 2, 0, 0)
† 1

128

(3; 0, 2, 0) 1
64

(3; 2, 0, 0) 1
64

(3; 0, 2, 1)
† 1

128

(3; 2, 0, 1)
† 1

128

Table 1: Stable Torsion branes that couple to twisted NSNS sectors. These are torsion branes of

the form in eqn. (5.2). Branes that are shown to be inconsistent are marked with a dagger.

branes with twisted NSNS coupling. For i = 1, for example, these would be the (3; 0, 2, 0)

and (3; 0, 0, 2) branes. These can be thought of as g2 invariant images of the Z2⊕Z2 torsion

branes found in [8].

The torsion branes with one twisted coupling in table 1 can also be thought of as the

orientifold invariant bound state of a fractional BPS D-brane and fractional anti-BPS D-

brane from the Z2×Z2 orbifold. This can be seen from the normalizations of the D-branes.

Indeed, the normalization squared of a fractional BPS D5 brane is 1
256 . The D5 torsion

brane has a normalization squared of 22 × 1
256 = 1

64 confirming that the torsion charged

brane can be seen as a superposition of a BPS anti-BPS pair of branes with oppositely

charged untwisted and twisted RR sectors.

The second type of torsion brane, branes that only couple to the untwisted NSNS

sector, have boundary states of the form in equation (5.1). Our results are presented in

table 2. Of these branes, in IIB the D4 and the (r = 3; si = 0, sj = 1, sk = 2) branes are

T-dual to D6 branes, and the (2; 2, 2, 2) brane is T-dual to a (2; 0, 0, 0) brane. Therefore

these branes are T-dual to branes that can be shown to be inconsistent in Type I.

Note that the (3; 0, 2, 0) branes of the type given in equation (5.1) and listed in table 2

can be thought of as a pair of torsion branes of the type given in equation (5.2) with opposite

twisted torsion charges. This is in fact a g2-invariant version of the process discussed in [8].

Of the branes in table 2, the D9 and the (r = 3; si = 2) torsion branes correspond

to the branes found by a probe brane argument in [20], using D9 branes with non-oblique
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(r; s1, s2, s3) n2

r = 2, si = 2, sj = sk = 0
† 1

32

r = 2, s1 = s2 = s3 = 2
† 1

32

r = 3, si = 1, sj = sk = 0 1
32

r = 3, si = sj = 1, sk = 0 1
16

r = 3, si = 2, sj = sk = 0 1
16

r = 3, s1 = s2 = s3 = 1
† 1

8

r = 3, si = 0, sj = 1, sk = 2
† 1

32

r = 3, si = 2, sj = sk = 1 1
16

r = 3, si = sj = 2, sk = 1 1
32

r = 3, s1 = s2 = s3 = 2 1
16

Table 2: Stable Torsion branes that only couple to the untwisted NSNS sectors. These are torsion

branes of the form in eqn. (5.1). Branes that are shown to be inconsistent are marked with a dagger.

magnetic flux on their world-volumes. The two other odd D-branes, an off-diagonal D5

and D7 brane, correspond to torsion charged branes in a configuration that includes a more

general D-brane background.

The additional branes found in table 2 do not introduce extra K-theory constraints

other than the ones obtained from a probe brane argument reviewed in section 4.2. This

can be seen as follows. One can see that the discrete charges carried by the branes in

table 2 are not independent by showing that they can decay to one another via changing

the compactification moduli. The tachyon cancellation equation (5.7) is a condition for

the absence of ground state tachyons. However, tachyonic momentum/winding modes

can develop as we vary the compactification radii. The stability region of the branes in

table 2 can be found by generalizing eqn. (5.7) to include the contributions from momentum

and winding modes. Details are given in appendix C. For example, one of the stability

conditions for a r = 3, s = 1 brane that fills x3 in the compact space is that R4 ≥ 1√
2
. If

we consider this D4 to be a pair of orientifold invariant truncated branes in the g2 or g3

orbifold, for R4 ≤ 1√
2

each of these branes can decay into a pair of orientifold invariant

r = 3, s1 = 2 D5 branes. Therefore the D4 and the D5 have the same torsion charge.

As a consistency check one can compute the tree level amplitude between two torsion

charged D-branes. If there a tachyon in the spectrum, then it signals that there is a common

Z2 charge between them which causes an instability in the system. We can use this method

to find an appropriate basis for the branes in terms of their charges. It can be shown that

the branes found in the probe brane argument are a consistent basis for four Z2 charges,

and that all the branes in table 2 are charged under at least one of these charges.

To enumerate the spectrum of non-BPS torsion charged D-branes, one should analyze

the stability regions (as discussed in appendix C) of the candidate torsion branes in table 2

and make sure that there are no decay channels by which they can decay to a pathological

brane (e.g., those that are T-dual to the D2 and D6 branes in Type I [6, 16]). Details of

such analysis can be found in appendix C. However, for the purpose of deriving discrete

K-theoretical constraints in string model building, this kind of analysis would have to be
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applied with caution. For example, in [20], the carriers of the discrete K-theory charges are

certain BPS bound state of D-branes (which of course must carry also the usual homological

RR charges in order for them to be BPS). The D-brane system is BPS only for certain

choices of compactification moduli. The analysis of decay channels in appendix C typically

involves decompactifying the theory and would take the D-brane system away from their

BPS configuration. It is possible that non-BPS branes carrying a particular discrete K-

theory charges cannot be constructed even though BPS branes carrying such charges exist.

The stability region of the branes is expanded on in appendix C, where a similar decay

channel analysis for the torsion brane spectrum in the hyper- and tensor-multiplet model

is also presented.

5.2 Integrally charged branes

In this sub-section we make some comments outside the main focus of this paper by investi-

gating integrally charged D-branes in the Z2×Z2 orientifolds. In addition to torsion branes

that couple only NSNS sectors, in orbifold and orientifold models one often finds so-called

truncated branes that couple to the twisted RR sectors. In the present type of models,

such integrally charged branes can have boundary states of one of two types. Firstly, they

could be of the form

|D(r, s)〉 = |B(r, s) >NS-NS +|B(r, s) >R − R, Ti
(5.8)

which corresponds to the open string projection operator
(

1 + ΩR

2

)(
1 + gi(−1)F

2

)
. (5.9)

Such branes are just the gj invariant version of the branes found in [8]. Alternately, the

truncated brane boundary states can be of the form

|D(r, s)〉 = |B(r, s) >NS-NS +|B(r, s) >R − R, Ti
(5.10)

+ |B(r, s) >NS − NS, Tj
+|B(r, s) >R − R, Tk

which corresponds to the open string projection operator
(

1 + ΩR

2

)(
1 + gi(−1)F

2

)(
1 + gk(−1)F

2

)
(5.11)

Using eqns. (3.8) and (3.9) we see that this second type of truncated brane are not possible

in the hyper-multiplet model, but are possible in the tensor-multiplet model.10

Calculating the spectrum of integrally charged branes is similar to finding torsion

branes. To determine the integrally charged branes, the tachyon cancellation condition

24 n2 × (1 + εT1
+ εT2

+ εT3
)

−2n sin
(π

4
(r − s + 1)

)
− 2n sin

(π

4
(r + s − 2s3 − 3)

)

−2n sin
(π

4
(r + s − 2s1 − 3)

)
− 2n sin

(π

4
(r + s − 2s2 − 3)

)
= 0

10Branes of the form (5.10) are consistent with the orientifold projection in the tensor multiplet model.
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Invariant Twisted States Ti (r; s1, s2, s3)

i = 1 (−1; 2, 0, 2)

(−1; 2, 2, 0)

(1; 0, 0, 2)

(1; 0, 2, 0)

(3; 2, 0, 2)

(3; 2, 2, 0)

i = 2 (−1; 0, 2, 2)

(−1; 2, 2, 0)

(1; 0, 0, 2)

(1; 2, 0, 0)

(3; 0, 2, 2)

(3; 2, 2, 0)

i = 3 (−1; 0, 2, 2)

(−1; 2, 0, 2)

(1; 0, 2, 0)

(1; 2, 0, 0)

(3; 0, 2, 2)

(3; 2, 0, 2)

Table 3: Stable brane–anti-brane pairs carrying twisted RR charges.

is still useful, but now the twisted sector parameter εTi
= −1 if the brane couples to the

respective twisted RR sector, and 0 otherwise.

A further condition which restricts the allowed values of r and si for these types of

non-BPS D-branes is that there cannot be any fractional branes with the same values for

r and si. Indeed if fractional branes exist for a given value of r and si we may always

consider a pair of them with opposite bulk RR charge and suitable Wilson lines, in analogy

to [52]. Such a combination also carries the required twisted RR charges. For completness

we list such pairs of fractional branes in table 3.

Returning to the tachyon cancelling condition (5.12) it is easy to see that in the case

of the hyper-multiplet model the tachyon only cancels for those values of r and si for

which fractional branes exist. Since such pairs of fractional branes are unstable in certain

regimes of moduli space, there will have to be other D-branes into which these fractional

branes decay. Such new D-branes will have boundary states different from the ones in

equations (5.8) and (5.10) and we hope to investigate them in the future.

In general non-BPS configurations of branes with integral charges have a possible

cosmological application as candidates for cold dark matter [29]. Integrally charged branes

with r = 0 are interesting because they would appear point-like to a 4D observer, but could

fill some of the compactified dimensions. We have listed some of the branes for different

values of discrete torsion in appendix E.

Besides the non-BPS branes we have been considering, there are also the BPS stuck

branes, which were mentioned briefly at the end of section 3.2. The stuck branes can be
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divided into those that are stuck at all the fixed points of the orbifold generators, or only

at one set of fixed points. For the first group we have the branes (3; 0, 0, 0), (1; 2, 2, 2),

and (−1; 0, 0, 0). These branes do not couple to the twisted sectors, and are located at the

fixed points of the g1 and g2 generators. An example of the second type of stuck brane is

the (1; 0, 0, 2) brane. This brane is stuck under the g3 orbifold generator but not the g1 or

g2. Thus the model contains three types of (1; 0, 0, 2) branes: 1) Singly fractional branes

with g1 twisted couplings (sitting at the g1 fixed points), 2) Singly fractional branes with

g2 twisted couplings (sitting at the g2 fixed points), and 3) Stuck branes sitting at the g3

fixed points.

Finally, we would also like to point out that the (2; 1, 1, 1) brane, which might seem to

be a bulk brane, is actually formed from a pair of branes of the form

|D1(r, s)〉 = |B(r, s) >NS-NS + |B(r, s) >R-R (5.12)

+ |B(r, s) >NS-NS,T + |B(r, s) >R-R,T

and

|D2(r, s)〉 = |B(r, s) >NS-NS + |B(r, s) >R-R

− |B(r, s) >NS-NS,T − |B(r, s) >R-R,T

For a singly fractional (2; 1, 1, 1) brane that couples to the g1 twisted sector, we could place

|D1(r, s)〉 at position x4 and |D2(r, s)〉 at position −x4, where neither fractional brane is

orientifold or orbifold invariant by itself, but is invariant as a pair. This brane was discussed

in [43, 44, 42].

5.3 Discrete torsion revisited

In this section we consider discrete torsion in the model and the extra quantum numbers

it introduces:

• We have to choose the discrete torsion between the orbifold generators g1|g2〉. Calling

this choice of phase κ, the choice κ = −1 has Hodge numbers (h11, h21) = (3, 51),

and is the model with discrete torsion, and ε = 1 has (h11, h21) = (51, 3), and is the

model without discrete torsion.

• We have factors of discrete torsion coming from the orientifold and the orbifold group,

κΩRgi
. There are four choices to be made: ΩR(−1)FL acting on the untwisted R-R

boundary state,11 and acting on each of the |gi〉 boundary states. See equations (3.8)

and (3.9) in section 3.2 for the invariant states.

Though these choices of discrete torsion might seem independent, they are actually

related to each other [46, 47], through the equation [50],

κΩRκΩRg1
κΩRg2

κΩRg3
= κ . (5.13)

11i.e., defining the O3 projection to be orthogonal or symplectic.
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In other words there are 24 choices of discrete torsion that are allowed in these ori-

entifolds. These choices correspond to the orbifold discrete torsion, the signs of the RR

charge of the O3-plane, and two of the three O7-planes. These sixteen choices have also

been derived in [28] using group cohomology techniques. In [28], the idea of orbifold dis-

crete torsion [40], was generalised to orientifolds. In particular the allowed orientifolds for a

given orientifold were shown to be classified by a generalised group cohomology with local

coefficients. For the models we have been considering in this paper the orientifold group is

G = ΩR(−1)Fl × g1 × g2, and the relevant group cohomology was found to be [28]

H2(G, Ũ (1)) = Z2
⊕4 , (5.14)

which gives exactly the 16 choices discussed above. The elements of this group cohomology,

[H] ∈ H2(G, Ũ (1)) can also be used to define twisted K-theories [28]

K
[H]
G (X) . (5.15)

which classify the allowed D-brane charges for a brane transverse to X.

We may easily extend our calculations from this section to the remaining 15 orientifolds

in this family. In particular, rewriting equation (5.7) for the torsion branes charged under

the twisted NS-NS sector and including factors of discrete torsion we have

24 n2 × (1 + εT1
+ εT2

+ εT3
) (5.16)

−2κΩR n sin(
π

4
(r − s + 1)) − 2κΩR,g1

n sin(
π

4
(r + s − 2s1 − 3))

−2κΩR,g2
n sin(

π

4
(r + s − 2s2 − 3)) − 2κΩR,g3

n sin(
π

4
(r + s − 2s3 − 3)) = 0

Our results in the previous sections dealt with (κ, κΩR, κΩRg1
, κΩRg2

, κΩRg3
) = (+,+,+,+,

+) for the hyper model while for the tensor model the choice is (−,+,−,−,−). We present

an analysis of the tensor-multiplet torsion brane spectrum in appendix C.3.

When calculating the torsion brane spectrum, some of the allowed branes do not fill

the non-compact space (i.e. r 6= 3). This means that the simple probe branes introduced

in [20], which fill the non-compact space, will not detect these extra torsion charges branes,

which might lead to extra K-theory constraints. For the original case we considered (i.e.

the hyper-multiplet model), our torsion brane spectrum only included r = 3 branes, so our

results matched with the probe brane argument.

To see the relation between the observed torsion charges from the probe brane approach

and the gauge groups on the D3 and D7i branes, we have included a chart of the gauge

groups in table 4. Comparing these gauge groups to the K-theory constraints in eqns (4.17)–

(4.20), we see that the discrete constraint on D9-branes is due to a symplectic group on

the probe D3-brane, whereas the discrete constraints on D5i-branes are the results of

symplectic groups on the probe D7i branes.

6. Discussion

In this paper, we have investigated D-branes in Z2 × Z2 orientifolds. We are particularly

interested in torsion charged D-branes because they cannot be detected from the usual (ho-

mological) tadpole conditions. Nevertheless, their charges need to be cancelled in consistent
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string vacua and hence their existence imposes non-trivial constraints on model building.

Because of the generality of the results, we expect the constraints derived here will be

useful for future work in building realistic D-brane models from more general orientifolds.

The search for realistic intersecting/magnetized D-brane models within the framework of

Z2 ×Z2 orientifolds has so far been focused mainly on a particular choice12 of discrete tor-

sion (i.e., the hyper-multiplet model whose non-BPS brane spectrum was discussed in detail

in section 5) and moreover with limited types of branes. For example, the set of branes con-

sidered in [20] included only bulk branes whose D-brane charges are induced by turning on

”non-oblique” (in the sense of [23, 24]) magnetic fluxes on the worldvolume of D9-branes.

As the search continues into different choices of discrete torsion or when more general

branes are included, we would have to go beyond the K-theory constraints in eqns (4.13)–

(4.16) (and analogously eqns. (4.17)–(4.20) for other choices of discrete torsion). The CFT

approach adopted here not only reproduces the probe brane results in [20], but finds addi-

tional torsion branes that arise from probe branes that are different from the simple probes

usually considered [20]. For these more general cases, one would have to check that the

discrete K-theory constraints are indeed satisfied or else the models are inconsistent.

So far, the derivations of K-theory constraints have been done in a case by case basis. It

would be useful to have a more general or perhaps an alternative understanding of how these

discrete constraints arise. The probe brane approach introduced in [17] provides a powerful

way to derive some (and in some cases all) of these discrete constraints. Having checked the

torsion brane spectrum in the Z2 × Z2 orientifold for all cases of discrete torsion, we have

explicitly shown that the set of bulk13 probe branes with symplectic gauge groups that one

can introduce is in one-to-one correspondence with the set of bulk torsion branes which

are space-filling in the four non-compact dimensions. Recent work [19] has suggested yet

another interesting way to understand the K-theory constraints in orientifold constructions

by uplifting to F-theory. A non-vanishing magnetic flux on the world-volume of D-branes

in Type IIB can be encoded by the 4-form flux G4 in F-theory. The K-theory constraints

can then be seen to follow from the standard Dirac quantization conditions on G4. It

would be interesting to see if a similar analysis can be done for D = 4, N = 1 orientifold

backgrounds such as the ones considered here.

The effects of K-theory constraints have recently been explored in the statistical studies

of string vacua [12, 21]. The significance of these discrete constraints in reducing the string

landscape is somewhat model dependent. The authors of [12] investigated an ensemble of

(homological) tadpole cancelling intersecting D-brane models in the Z2×Z2 orientifold, and

found that considering K-theory constraints reduced the possible brane configurations by a

factor of five. This is in contrast to [21] which carried out a similar analysis for an ensemble

of Rational Conformal Field Theory (RCFT) orientifolds with qualitative features of the

Standard Model, and found that the additional K-theory constraints did not significantly

reduce the number of solutions. It would be interesting to revisit [12] for other choices of

discrete torsion using the K-theory constraints derived here.

12See, however, [50], for model building from Z2×Z2 orientifold with a different choice of discrete torsion.
13By bulk branes, we mean branes that are not stuck at fixed points and so they cannot carry twisted

NSNS or RR charges.
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Finally, our results suggest that the spectrum of stable non-BPS D-branes for D = 4,

N = 1 orientifolds can be quite rich (e.g. table 5 for integrally charged non-BPS branes).

As discussed in [29], stable non-BPS branes that are point-like in our four non-compact

dimensions can be interesting candidates for cold dark matter. An interesting direction

for future investigation would be to compute their scattering cross sections and see if they

can give rise to sharp signatures that could distinguish them from other cold dark matter

candidates.
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A. Some details about the amplitudes

In this appendix, we summarize the results of the full Klein bottle, Möbius strip, and An-

nulus amplitudes [26, 46, 47]. The expressions are more complete than that in section 4.1

in that we also list the twisted sector contribution to the partition function. We have also

included factors of discrete torsion, see section 5.3 for more details. Each of these ampli-

tudes is calculated first in the open channel and then converted into the closed channel

after a Poisson resummation and a modular transformation. For the modular transforma-

tions, the Klein Bottle has t = 1/4l; for the Möbius Strip, t = 1/8l; and for the Annulus,

t = 1/2l, where t is the modulus for the open string one loop amplitude and l is the modu-

lus for the closed string vacuum amplitude. In addition we need to write down the winding

and momentum sums on the Klein Bottle (primed) and Möbius Strip/Annulus (no prime),

which are

M ′
j =

∑∞
n=−∞ e

−πtn2

R2
j , W ′

j =

∞∑

m=−∞
e−πtm2R2

j (A.1)

M̃ ′
j =

∑∞
s=−∞ e

−πR2
j s2

t , W̃ ′
j =

∞∑

r=−∞
e

−πr2

R2
j

t

Mj =
∑∞

n=−∞ e
−2πtn2

R2
j , Wj =

∞∑

m=−∞
e−2πtm2R2

j

M̃j =
∑∞

s=−∞ e
−πR2

j s2

2t , W̃j =

∞∑

r=−∞
e

−πr2

2R2
j

t

The tilded definitions are the momentum and winding after a Poisson resummation.
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Klein bottle.

K =
1

16

V4

(2π)4

∫ ∞

0

dt

2t3

(
f3

8(e−2πt)

f1
8(e−2πt)

− f4
8(e−2πt)

f1
8(e−2πt)

− f2
8(e−2πt)

f1
8(e−2πt)

)
(A.2)

×




8∏

i=3

W ′
i +

6∏

i=3

M ′
i

∏

j=7,8

W ′
j +

8∏

i=5

M ′
i

∏

j=3,4

W ′
j +

∏

i=3,4,7,8

M ′
i

∏

j=5,6

W ′
j




+16 × 1

8

V4

(2π)4

∫ ∞

0

dt

2t3

(
f3

4(e−2πt)f2
4(e−2πt)

f1
4(e−2πt)f4

4(e−2πt)
− f2

4(e−2πt)f3
4(e−2πt)

f1
4(e−2πt)f4

4(e−2πt)

)

×


κΩRκΩRg1


κ

∏

i=3,4

W ′
i +

∏

i=3,4

M ′
i


 + κΩRκΩRg2


κ

∏

i=5,6

W ′
i +

∏

i=5,6

M ′
i




+κΩRκΩRg3


κ

∏

i=7,8

W ′
i +

∏

i=7,8

M ′
i







= 2
V4

(2π)4

∫ ∞

0
dl

(
f3

8(e−2πl)

f1
8(e−2πl)

− f2
8(e−2πl)

f1
8(e−2πl)

− f4
8(e−2πl)

f1
8(e−2πl)

)

×
( 8∏

i=3

1

Ri
W̃ ′

i +

6∏

i=3

RiM̃
′
i

∏

j=7,8

1

Rj
W̃ ′

j +

8∏

i=5

RiM̃
′
i

∏

j=3,4

1

Rj
W̃ ′

j

+
∏

i=3,4,7,8

RiM̃
′
i

∏

j=5,6

1

Rj
W̃ ′

j

)
(A.3)

+16
V4

(2π)4

∫ ∞

0
dl

(
f3

4(e−2πl)f4
4(e−2πl)

f1
4(e−2πl)f2

4(e−2πl)
− f4

4(e−2πl)f3
4(e−2πl)

f1
4(e−2πl)f2

4(e−2πl)

)

×


κΩRκΩRg1


κ

∏

j=3,4

1

Rj
W̃ ′

j +
∏

i=3,4

RiM̃
′
i


+κΩRκΩRg2


κ

∏

j=5,6

1

Rj
W̃ ′

j +
∏

i=5,6

RiM̃
′
i




+κΩRκΩRg3


κ

∏

j=7,8

1

Rj
W̃ ′

j +
∏

i=7,8

RiM̃
′
i





 .

Möbius strip. The following are the results on the Möbius Strip, written as interaction

between a crosscap state and a boundary state for a (r; s1, s2, s3) brane. Note that when

switching from open to closed channel, the f3(iq) and f4(iq) functions pick up a factor of

eiπ. This is due to the transformation of the functions with imaginary arguments (see, e.g.,

[6]). We mention this because the partition function will gain a factor of sine, and this

term will show up when discussing torsion branes (see appendix B for more details). The

NS sector to the Möbius Strip contribution is

M =
1

16

Vr+1

(2π)r+1
κΩR

∫ ∞

0

dt

2t
(2t)−(r+1)/2 (A.4)

×
(

f5+r−s
4 (ie−πt)f3+s−r

3 (ie−πt) − f5+r−s
3 (ie−πt)f3+s−r

4 (ie−πt)

f5+r−s
1 (ie−πt)f3+s−r

2 (ie−πt)2−(3+s−r)/2

)

×
(

Tr γT
Ω3,Dp

γ−1
Ω3,Dp

∏

i=6−s

Wi

)
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+
3∑

i=1

1

16

Vr+1

(2π)r+1
κΩRgi

∫ ∞

0

dt

2t
(2t)−(r+1)/2 1

2−(7−r−s+2si)/2

×
(

f1+r+s−2si

4 (ie−πt)f7−r−s+2si

3 (ie−πt) − f1+r+s−2si

3 (ie−πt)f7−r−s+2si

4 (ie−πt)

f1+r+s−2si

1 (ie−πt)f7−r−s+2si

2 (ie−πt)

)

×


Tr γT

Ω7i,Dp
γ−1
Ω7i,Dp

∏

j=s−si

Mj

∏

k=2−si

Wk




=
1

8

Vr+1

(2π)r+1
κΩR

∫ ∞

0
dl

(
ei(π/4)(s−r−1)f5+r−s

3 (ie−2πl)f3+s−r
4 (ie−2πl)

f5+r−s
1 (ie−2πl)f3+s−r

2 (ie−2πl)2−(3+s−r)/2

−e−i(π/4)(s−r−1)f5+r−s
4 (ie−2πl)f3+s−r

3 (ie−2πl)

f5+r−s
1 (ie−2πl)f3+s−r

2 (ie−2πl)2−(3+s−r)/2

)

×
(

Tr γT
Ω3,Dp

γ−1
Ω3,Dp

∏

i=6−s

1

Ri
W̃i

)

+

3∑

i=1

1

8

Vr+1

(2π)r+1
κΩRgi

∫ ∞

0
dl

1

2−(7−r−s+2si)/2

(
ei(π/4)(3−r−s+2si)f1+r+s−2si

3 (ie−2πl)f7−r−s+2si

4 (ie−2πl)

f1+r+s−2si

1 (ie−2πl)f7−r−s+2si

2 (ie−2πl)

−e−i(π/4)(3−r−s+2si)f1+r+s−2si

4 (ie−2πl)f7−r−s+2si

3 (ie−2πl)

f1+r+s−2si

1 (ie−2πl)f7−r−s+2si

2 (ie−2πl)

)

×


Tr γT

Ω7i,Dp
γ−1
Ω7i,Dp

∏

j=s−si

RjM̃j

∏

k=2−si

1

Rk
W̃k


 .

Annulus. Below is the Annulus contribution to the partition function for strings stre-

tched between the D3 and D7 branes, including contributions from twisted sectors and

cross terms.

C =
1

16

V4

(2π)4

∫ ∞

0

dt

2t
(2t)−2

(
f3

8(e−πt)

f1
8(e−πt)

− f4
8(e−πt)

f1
8(e−πt)

− f2
8(e−πt)

f1(e−πt)

)
(A.5)

×
(

Tr γ1,DpTr γ−1
1,Dp

∏

s

Mi

∏

6−s

Wj

)

+

3∑

i=1

1

4

V4

(2π)4

∫ ∞

0

dt

2t
(2t)−2

(
f3

4(e−πt)f4
4(e−πt)

f1
4(e−πt)f2

4(e−πt)
− f4

4(e−πt)f3
4(e−πt)

f1
4(e−πt)f2

4(e−πt)

)

×


Tr γgi,DpTr γ−1

gi,Dp

∏

si

Mj

∏

k=2−si

Wk




+
1

8

V4

(2π)4

∫ ∞

0

dt

2t
(2t)−2

(
f3

4(e−πt)f2
4(e−πt)

f1
4(e−πt)f4

4(e−πt)
− f3

4(e−πt)f2
4(e−πt)

f1
4(e−πt)f4

4(e−πt)

)
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×
(

3∑

i=1

Tr γ1,D3Tr γ−1
1,D7i

∏

si

Wi

)

+
1

8

V4

(2π)4

∫ ∞

0

dt

2t
(2t)−2

(
f3

4(e−πt)f2
4(e−πt)

f1
4(e−πt)f4

4(e−πt)
− f3

4(e−πt)f2
4(e−πt)

f1
4(e−πt)f4

4(e−πt)

)

×




3∑

i=1,i6=j 6=k

Tr γ1,D7i
Tr γ−1

1,D7j

∏

sk

Mk




−1

8

V4

(2π)4

∫ ∞

0

dt

2t
(2t)−2

(
f2

4(e−πt)f4
4(e−πt)

f1
4(e−πt)f3

4(e−πt)

)

×
(

3∑

i=1

Tr γgi,D3Tr γ−1
gi,D7i

∏

si

Wi

)

−1

8

V4

(2π)4

∫ ∞

0

dt

2t
(2t)−2

(
f2

4(e−πt)f4
4(e−πt)

f1
4(e−πt)f3

4(e−πt)

)

×




3∑

i=1,i6=j 6=k

Tr γgk,D7i
Tr γ−1

gk,D7j

∏

sk

Mk




=
1

512

V4

(2π)4

∫ ∞

0
dl

(
f3

8(e−2πl)

f1
8(e−2πl)

− f4
8(e−2πl)

f1
8(e−2πl)

− f2
8(e−2πl)

f1
8(e−2πl)

)

×
(

Tr γ1,DpTr γ−1
1,Dp

∏

s

RiM̃i

∏

6−s

1

Rj
W̃j

)

+
3∑

i=1

1

32

V4

(2π)4

∫ ∞

0
dl

(
f3

4(e−2πl)f2
4(e−2πl)

f1
4(e−2πl)f4

4(e−2πl)
− f2

4(e−2πl)f3
4(e−2πl)

f1
4(e−2πl)f4

4(e−2πl)

)

×


Tr γgi,DpTr γ−1

gi,Dp

∏

j=si

RjM̃j

∏

k=2−si

1

Rk
W̃k




+
1

64

V4

(2π)4

∫ ∞

0
dl

(
f3

4(e−2πl)f4
4(e−2πl)

f1
4(e−2πl)f2

4(e−2πl)
− f3

4(e−2πl)f4
4(e−2πl)

f1
4(e−2πl)f2

4(e−2πl)

)

×
(

3∑

i=1

Tr γ1,D3Tr γ−1
1,D7i

∏

si

1

Ri
W̃i

)

+
1

64

V4

(2π)4

∫ ∞

0
dl

(
f3

4(e−2πl)f4
4(e−2πl)

f1
4(e−2πl)f2

4(e−2πl)
− f3

4(e−2πl)f4
4(e−2πl)

f1
4(e−2πl)f2

4(e−2πl)

)

×




3∑

i=1,i6=j 6=k

Tr γ1,D7i
Tr γ−1

1,D7j

∏

sk

RkM̃k




− 1

64

V4

(2π)4

∫ ∞

0
dl

(
f4

4(e−2πl)f2
4(e−2πl)

f1
4(e−2πl)f3

4(e−2πl)

)
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×
(

3∑

i=1

Tr γgi,D3Tr γ−1
gi,D7i

∏

si

1

Ri
W̃i

)

− 1

64

V4

(2π)4

∫ ∞

0
dl

(
f4

4(e−2πl)f2
4(e−2πl)

f1
4(e−2πl)f3

4(e−2πl)

)

×




3∑

i=1,i6=j 6=k

Tr γgk,D7i
Tr γ−1

gk,D7j

∏

sk

RkM̃k




B. Finding the tachyon

As mentioned in section 5.1, there are eight possible contribution to the tachyon: the

untwisted Annulus diagram, the twisted Annulus diagram (three contributions), the Möbius

strip diagram for a string exchange between the Dp and the O3 plane, and the Möbius

strip diagram for a string exchange between the Dp and the O7 plane (three contributions).

Each of these contributions is listed below, and was originally calculated in the closed string

channel using the boundary state method. The open string expression was obtained after

a Poisson resummation and a modular transformation.

Since the orbifold action produces NSNS and RR twisted sectors that give equal and

opposite contributions to the amplitudes, the parameter εi has been introduced. εi = 1 if

the brane couples to the Ti twisted NSNS sector, and εi = −1 if the brane couples to the

Ti twisted RR sector. εi = 0 if the brane does not couple to the Ti twisted sector.

When these terms are expanded, combining the tachyonic modes (q−1) from the An-

nulus and Möbius Strip diagrams produces the constraint equation (5.7). After each term

we provide the expansion of the tachyonic and massless modes.

A = 24N2
(r,s),U

∏
6−s Rj∏

s Ri

∫ ∞

0

dt

2t
(2t)−(r+1)/2

([
f3(e

−πt)

f1(e−πt)

]8

−
[
f2(e

−πt)

f1(e−πt)

]8
)

(B.1)

×
(

∏

s

Mi

∏

6−s

Wj

)

+

3∑

i=1

22+s−siN2
(r,s),Ti

∏
2−si

Rj∏
si

Rk
εi

∫ ∞

0

dt

2t
(2t)−(r+1)/2 f4

4(e−πt)f3
4(e−πt)

f1
4(e−πt)f2

4(e−πt)
)

×
(

∏

si

Mk

∏

2−si

Wj

)

= 24N2
(r,s),U

∏
6−s Rj∏

s Ri

∫ ∞

0

dt

2t
(2t)−(r+1)/2(q−1 − 8q0 + · · ·) ×

∏

s

Mi

∏

6−s

Wj

+

3∑

i=1

22+s−siN2
(r,s),Ti

∏
2−si

Rj∏
si

Rk
εi

×
∫ ∞

0

dt

2t
(2t)−(r+1)/2((4q)−1 + · · ·) ×

∏

si

Mk

∏

2−si

Wj
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M3 = 32N(r,s),UNO3

∏

6−s

Rj

∫ ∞

0

dt

2t
(2t)−(r+1)/2 (B.2)

e−i(π/4)(s−r−1)f5+r−s
4 (ie−πt)f3+s−r

3 (ie−πt)−ei(π/4)(s−r−1)f5+r−s
3 (ie−πt)f3+s−r

4 (ie−πt)

f5+r−s
1 (ie−πt)f3+s−r

2 (ie−πt)

× 1

2−(3+s−r)/2

(
∏

i=6−s

Wi

)

= 32N(r,s),UNO3

∏

6−s

Rj

∫ ∞

0

dt

2t
(2t)−(r+1)/2

(
2 sin

π

4
(r − s + 1)

) (
q−1 + · · ·

)

×
(

∏

i=6−s

Wi

)

M7i
= 4N(r,s),UNO7i

∏
2−si

Rk∏
s−si

Rj

∫ ∞

0

dt

2t
(2t)−(r+1)/2 (B.3)

(
e−i(π/4)(3−r−s+2si)f1+r+s−2si

4 (ie−πt)f7−r−s+2si

3 (ie−πt)

f1+r+s−2si

1 (ie−πt)f7−r−s+2si

2 (ie−πt)

−ei(π/4)(3−r−s+2si)f1+r+s−2si

3 (ie−πt)f7−r−s+2si

4 (ie−πt)

f1+r+s−2si

1 (ie−πt)f7−r−s+2si

2 (ie−πt)

)

× 1

2−(7−r−s+2si)/2

(
∏

i=s−si

Mk

∏

2−si

Wj

)

= 4N(r,s),UNO7i

∏
2−si

Rk∏
s−si

Rj

∫ ∞

0

dt

2t
(2t)−(r+1)/2

(
2 sin

π

4
(r + s − 2si − 3)

) (
q−1 + · · ·

)

×
(

∏

i=s−si

Mk

∏

2−si

Wj

)

where the normalizations for the Annulus contribution are matched to the open string one

loop diagram,

N2
(r,s),U =

Vr+1

(2π)r+1
n2

∏
s Ri∏

6−s Rj
(B.4)

N2
(r,s),Tk

= 24−s+si
Vr+1

(2π)r+1
n2

∏
sk

Ri∏
2−sk

Rj
(B.5)

and the normalization for the Möbius strip contribution comes from the normalizations of

the crosscap states and are defined

N2
O3 =

1

1024

V4

(2π)4

∏

s

1

Rj
(B.6)

N2
O7i

=
1

16

V4

(2π)4

∏
4−s+si

Ri∏
si

Rj
(B.7)

n is a constant that is determined for different values of (r, s). For BPS D-branes that

couple to all three twisted sectors, n2 = 1
256 .
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C. Stability region of the torsion branes

C.1 Higher winding and momentum modes

In this section we will calculate the stability region of the torsion branes in section 5.1. In

that section the branes were considered stable if the ground state tachyonic mode vanished.

To determine the stability region of these branes, we must analyze the higher winding and

momentum modes, and require that these not become tachyonic.

For a general (r, s) torsion brane with possible twisted couplings, the potentially tachy-

onic modes, with higher winding and momentum included, are

24 n2 q−1 ×
∏

s

Mi

∏

6−s

Wj + 24 n2
3∑

k=1

εk q−1 ×
∏

sk

Mi

∏

2−sk

Wj (C.1)

−2nκΩR q−1 sin
(π

4
(r − s + 1)

)
×

∏

6−s

Wj

−2nκΩRg1
q−1 sin

(π

4
(r + s − 2s1 − 3)

)
×

∏

s2+s3

Mi

∏

2−s1

Wj

−2nκΩRg2
q−1 sin

(π

4
(r + s − 2s2 − 3)

)
×

∏

s1+s3

Mi

∏

2−s2

Wj

−2nκΩRg3
q−1 sin

(π

4
(r + s − 2s3 − 3)

)
×

∏

s1+s2

Mi

∏

2−s3

Wj

where εk = 1 if the brane couples to the gk NSNS twisted sector, and 0 otherwise. By

expanding the winding and momentum terms, in addition to having the vacuum state

cancel (eqn. (5.7)), we must restrict the size of the compact directions in the expression

above such that the higher modes are not tachyonic. For example, the (3; 0, 2, 0) brane

that couples to the g1 twisted NSNS sector, along the g1 twisted directions (x5, x6, x7, x8)

the brane is stable for

2

R2
5,6

− 1 ≥ 0 (C.2)

2R2
7,8 − 1 ≥ 0 . (C.3)

A (3; 0, 2, 0) torsion brane without any twisted couplings, whose stability region in any

of the compact directions

2

R2
i

+ 2R2
j − 1 ≥ 0 , i = 5, 6 j = 3, 4, 7, 8 . (C.4)

C.2 Torsion branes in the hyper-multiplet model

In section 5 we have identified stable, torsion charged D-branes in the hyper-multiplet

model, and have presented in equation (5.16) a general condition for the absence of an open

string tachyon on a D-brane for the different allowed choices of discrete torsion in these

models. Enumerating such tachyon free torsion-charged D-branes is then straightforward.

Not all tachyon free branes however lead to allowed branes in string theory. In the case of
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branes that couple to twisted NSNS sectors, one needs to ensure that the corresponding

boundary states are invariant with respect to the GSO and orientifold projections. Further,

as in the case of Type I SO and Sp theories we need to ensure that our D-branes do not

suffer from the pathologies associated to the D6 and D2 branes in those theories [16, 6].

It is also possible for apparently consistent D-branes to decay into inconsistent D-branes.

Such decays signal the need to exclude the former branes [8]. In this sub-section we present

the allowed torsion charged D-branes in the hyper-multiplet model as an example.

For the hyper-multiplet model the choice of discrete torsion is

κ = 1 , κΩR = 1 , κΩRgi
= 1 , (C.5)

and equation (5.16) together with the conditions (3.8) imply that tachyon-free torsion D-

branes only exist in the form given in eqns (5.2) and (5.1). Torsion branes of the form given

in equation (5.2) with coupling to the NSNSTg1 twisted sector need to have (r; s1, s2, s3)

of the form

(2; 0, 2, 0) , (2; 0, 0, 2) , (3; 0, 2, 0) , (3; 0, 0, 2) , (3; 1, 2, 0) , (3; 1, 0, 2) . (C.6)

Tachyon-free torsion branes of the form given in equation (5.1) need to have (r; s1, s2, s3)

of the form

(2; 2, 0, 0) , (2; 2, 2, 2) , (3; 1, 0, 0) , (3; 1, 1, 0) , (3; 2, 0, 0) ,

(3; 1, 1, 1) , (3; 0, 1, 2) , (3; 2, 1, 1) , (3; 2, 2, 1) , (3; 2, 2, 2) . (C.7)

and all permutations of the si.

For the torsion branes with one twisted coupling given by equation (5.2), the (2; 0, 2, 0),

(2; 0, 0, 2), (3; 1, 2, 0), and (3; 1, 0, 2) branes are g3 images of the Z2⊕Z2 (4, 2)-branes which

were found to be inconsisntent in [8]. Therefore the only consistent brane with one twisted

coupling is the (3; 2, 0, 0) brane and all permutations of the si.

When considering possible decay channels, they suggest either one of two potential

decays: a) Dp brane → D(p±1) brane or b) Dp brane → D(p±2) brane. General transitions

of the form a) have been beautifully analysed by [52]. At a critical compactification radius

the two CFTs that correspond to the two D-branes are equivalent, allowing a Dp brane

to decay into a D(p ± 1) brane. Decays of the form b) are in general more complicated,

and it is not clear what are the decay channels allowed by matching the whole CFTs.

For example, while a CFT matching exists for certain freely acting orbifolds [53], in more

complicated settings such as [4, 8] no such matching exists and it is in general not known

what branes decay into. Therefore we will only consider decays of the form a) to exclude

inconsistent torsion branes.

Since the torsion branes that couple only to the NSNSU sector (of the form in equa-

tion (5.1)) are pairs of torsion branes that couple to the NSNSTgi sector (of the form in

equation (5.2)) with opposite twisted torsion charge, then we must exclude branes that

have the same values of (r; s1, s2, s3). This means that for branes that couple only to the

NSNSU sector, the (2; 2, 0, 0) and (3; 0, 1, 2) are excluded. The (2; 2, 2, 2) and (3; 1, 1, 1) are
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T-dual to a D2 and D6 brane in Type I, and are also excluded. In addition, for certain

values of the compactification radii there are the allowed decays

(3; 1, 1, 0) → (3; 1, 2, 0) , (C.8)

and

(3; 1, 2, 1) → (3; 1, 2, 0) . (C.9)

Therefore the consistent stable torsion branes that have no twisted couplings are

(3; 1, 0, 0) , (3; 2, 0, 0) , (3; 2, 2, 1) , (3; 2, 2, 2) . (C.10)

and all permutations of the si.

Considering the remaining torsion branes above, the (3; 1, 0, 0) and (3; 2, 0, 0) branes

are related by decay, and the (3; 2, 2, 1) and (3; 2, 2, 2) branes are also related by decay.

Since the (3; 2, 0, 0), (3; 0, 2, 0), (3; 0, 0, 2), and (3; 2, 2, 2) branes are not related by decay,

then these branes form an independent basis of K-theory torsion charge, and match with

the probe brane results in eqns. (4.13)–(4.16).

C.3 Torsion branes in the tensor-multiplet model

In this subsection we continue our analysis to the torsion branes in the tensor-multiplet

model. For the tensor-multiplet model the choice of discrete torsion is

κ = −1 , κΩR = 1 , κΩRgi
= −1 , (C.11)

and equation (5.16) together with the conditions (3.9) imply that tachyon-free torsion

D-branes of the type given in equation (5.3) need to have (r; s1, s2, s3) of the form

(−1; 2, 2, 2) , (0; 2, 2, 2) , (0; 0, 0, 0) , (1; 0, 0, 0) , (2; 0, 0, 0) . (C.12)

Tachyon-free torsion D-branes of the type given in equation (5.2), with couplings to the

NSNSTg1 sector, need to have (r; s1, s2, s3) of the form

(−1; 2, 2, 2) , (−1; 1, 2, 2) , (0; 2, 2, 2) , (0; 1, 2, 2) , (0; 0, 0, 0) ,

(0; 1, 0, 0) , (1; 0, 0, 0) , (1; 1, 0, 0) , (2; 0, 0, 0) , (2; 1, 0, 0) . (C.13)

Finally, tachyon-free torsion charged D-branes of the form given in equation (5.1) need to

have (r; s1, s2, s3) of the form

(−1; 2, 2, 2) , (−1; 1, 2, 2) , (−1; 1, 1, 2) , (−1; 1, 1, 1) , (0; 2, 2, 2) ,

(0; 1, 2, 2) , (0; 1, 1, 2) , (0; 1, 1, 1) , (0; 0, 1, 1) , (0; 0, 0, 1) ,

(0; 0, 0, 0) , (1; 0, 0, 0) , (1; 1, 0, 0) , (1; 1, 1, 0) , (1; 1, 1, 1) ,

(2; 0, 0, 0) , (2; 1, 0, 0) , (2; 1, 1, 0) . (C.14)

and all permutations of the si.
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It is easy to see that the (0; 0, 0, 0)-brane and the (1; 1, 0, 0)-brane of the type (5.2)

are g3 images of the Z2 ⊕ Z2 (2, 4)-branes found in [8].14 These branes were shown not to

be consistent [8], and so we exclude them here as well. For branes of the type (5.1), the

(−1; 1, 1, 1), (0; 1, 1, 2), and (2; 1, 1, 0) branes are also inconsistent and must be removed.

Since it is possible to form branes of the type (5.2) from branes of the type (5.3), and

branes of the type (5.1) from branes of the type (5.2), we need to exclude all torsion branes

with the above values of (r; s1, s2, s3).

We may next consider torsion branes of the type (5.1). It is possible to show that

the following decay processes between torsion-charged branes of this type can occur for

suitable values of radii

(0; 1, 1, 1) → (0; 0, 1, 1) → (0; 0, 0, 1) → (0; 0, 0, 0) . (C.15)

as well as

(1; 1, 1, 1) → (1; 1, 1, 0) → (1; 1, 0, 0) . (C.16)

Since the end of each of these decays is an inconsistent D-brane, all of the D-branes in the

above decays are also inconsistent.

To summarize, the tensor-multiplet model includes torsion D-branes of the type given

in equation (5.3) with (r; s1, s2, s3) of the form

(−1; 2, 2, 2) , (0; 2, 2, 2) , (1; 0, 0, 0) , (2; 0, 0, 0) . (C.17)

The tensor model has torsion D-branes of the type given in equation (5.2), with couplings

to the NSNSTg1 sector, with (r; s1, s2, s3) of the form

(−1; 2, 2, 2) , (−1; 1, 2, 2) , (0; 2, 2, 2) , (0; 1, 2, 2) , (C.18)

(1; 0, 0, 0) , (2; 0, 0, 0) , (2; 1, 0, 0) .

Similar results hold for branes of the type given in equation (5.2) with couplings to the

other NSNSTgi sectors. Finally, the tensor model has torsion D-branes of the form given

in equation (5.1) for (r; s1, s2, s3) of the form

(−1; 2, 2, 2) , (−1; 1, 2, 2) , (−1; 1, 1, 2) , (0; 2, 2, 2) , (C.19)

(0; 1, 2, 2) , (1; 0, 0, 0) , (2; 0, 0, 0) , (2; 1, 0, 0) .

and all permutations of the si.

C.4 A comment on other choices of discrete torsion

Naively, there are many torsion charged branes that are a solution to eqn (5.16). Though in

our analysis for the hyper-multiplet model we have excluded some of the branes in tables 1

and 2 due to their relation to inconsistent branes, this does not mean that for other choices

14The (2, 4)-brane was not explicitly mentioned as an inconsistent brane in [8]. See section D for a

brief review of the 6D tensor multiplet, including the equations needed to calculate the spectrum of stable

D-branes.
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of discrete torsion that the discrete K-theory charges found using the probe brane approach

in equations (4.17)–(4.20) are also excluded if branes that could carry those charges are

excluded. These discrete K-theory charges can be carried by BPS branes even when non-

BPS branes that also carry the same charges do not exist. The probe brane approach in

the hyper-multiplet uses a configuration of BPS D3 and D7 branes to detect these discrete

charges, and the same charges can also be carried by non-BPS torsion charged D9 and D5

branes respectively. This method is independent of whether the non-BPS torsion charged

D9 and D5 branes exist. In addition, the discussion above is based upon changing the

compactification radii of the torsion branes along certain directions so that they can decay.

By doing this we are moving the model away from its BPS configuration, and thus must

treat this analysis with caution.

There are interesting features for the torsion brane spectrum for other choices of dis-

crete torsion. Some of the other 14 cases contain branes that do not fill the non-compact

directions (i.e. r 6= 3), and can possibly carry torsion charge not carried by the r = 3

branes. In addition, these models can contain r = 3 branes with oblique flux on their

worldvolume, and might be useful for future model building. To determine the torsion

brane spectrum, a case by case analysis must be done to determine whether the branes

are stable, orientifold and orbifold invariant, and consistent. A full study of the remaining

cases would be useful both to string phenomenology and to the study of twisted K-theory.

D. Some known examples

Here, we will examine a previously worked example of a T4/Z2 and a T-dual version of

the T6/Z2 × Z2 considered in this paper. The former corresponds to the hyper-multiplet

model of a T4/Z2 orientifold [34, 35] analyzed in [8] where the underlying K-theory group

structure was also discussed. The model contains 1 O5 and 1 O9 plane whose charge is

cancelled by introducing D5 and D9 branes. The RR tadpole conditions are

v6v4

16
{322 − 64Tr(γ−1

Ω,9γ
T
Ω,9) + (Tr(γ1,9))

2} (D.1)

+
v6

16v4
{322 − 64Tr(γ−1

ΩR,5γ
T
ΩR,5) + (Tr(γ1,5))

2}

+
v6

64

16∑

I=1

{Tr(γR,9) − 4Tr(γR,I)}2 = 0

The open string projection operator is

(
1 + Ω

2

) (
1 + I4

2

)(
1 + (−1)F

2

)

Adapting the results from [8], the tachyon cancellation condition15,16 is

24n2(1 + ε) − 2
√

2 n sin
(π

4
(r + s − 5)

)
− 2

√
2 n sin

(π

4
(r − s − 1)

)
= 0 . (D.2)

15In the T
4, r ≤ 5 and s ≤ 4.

16See [8, table I] for more details on the value of n for different values of r and s.
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κ κΩR κΩRg1
κΩRg2

κΩRg3
D3 D71 D72 D73

+ + + + + USp(Nα) USp(Nα) USp(Nα) USp(Nα)

+ + + − − SO(Nα) SO(Nα) USp(Nα) USp(Nα)

+ − + + − USp(Nα) SO(Nα) SO(Nα) USp(Nα)

+ − − − − SO(Nα) SO(Nα) SO(Nα) SO(Nα)

− − + + + USp(Nα/2) U(Nα/2) U(Nα/2) U(Nα/2)

− − + − − U(Nα/2) SO(Nα/2) U(Nα/2) U(Nα/2)

− + + + − U(Nα/2) U(Nα/2) U(Nα/2) USp(Nα/2)

− + − − − SO(Nα/2) U(Nα/2) U(Nα/2) U(Nα/2)

Table 4: The gauge group for the open strings in the 33 and 7i7i sectors. The gauge groups for

the other eight choices of discrete torsion can be obtained by a simple permutation of the results

above.

For ε = −1 this corresponds to integrally charged non-BPS D-branes that couple to the

twisted R-R sector, and reproduces the result s=0,4 for all r and r = −1, 3 for all s. The

other option of ε = 1 gives us torsion branes that couple to the twisted NSNS sector, and

are stable for r=5, s=2.

In [8] the tensor-multiplet model was also investigated. As mentioned previously, the

tensor-multiplet differs from the hyper-multiplet by a choice of discrete torsion. Changing

the discrete torsion between the orientifold and I4, is equivalent to changing the sign in the

Möbius strip diagram in the Dp - O5 amplitude. The new tachyon cancellation condition

for torsion branes in the tensor-multiplet is

24n2(1 + ε) − 2
√

2 n sin
(π

4
(r + s − 5)

)
+ 2

√
2 n sin

(π

4
(r − s − 1)

)
= 0 (D.3)

The BPS fractional branes have r, s = (1,0), (1,4), (5,0), and (5,4). The new non-BPS

branes from eqn. (D.3) are r=1,5, s=1,2,3 for the integrally charged branes, and for the

torsion branes r=-1,0 and s=0 or r=3,4 and s=4.

Let us now consider the T6/Z2 × Z2 orientifold in the T-dual frame where there are

O9-planes and 3 types of O5 planes [26]. The RR tadpole conditions are

{v1v2v3(32
2 − 64Tr(γ−1

Ω,9γ
T
Ω,9) + (Tr(γ1,9))

2) (D.4)
∑

i

vi

∏

j 6=i

1

vj
(322 − 64Tr(γ−1

ΩRi,5i
γT
ΩRi,5i

) + (Tr(γ1,5i
))2}

The open string projection operator is

(
1 + Ω

2

)(
1 + g1

2

)(
1 + g2

2

)
(D.5)

which lead to the following tachyon cancellation condition

24 n2 × (1 + εT1
+ εT2

+ εT3
) (D.6)

−2n sin
(π

4
(r + s − 5)

)
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κ κΩR κΩRg1
κΩRg2

κΩRg3
Integrally Charged Branes (r = 0, s)

+ + + + + None

+ + + − − s1 = 1, sj = 1, sk = 0

s1 = s2 = s3 = 1

s1 = 1, sj = 1, sk = 2
†

+ − + + − s1 = 1

s2 = 1

s1 = 1, sj = 1, sk = 0

s2 = 1, sj = 1, sk = 0

s1 = s2 = s3 = 1

s1 = 1, sj = 0, sk = 2

s2 = 1, sj = 0, sk = 2

s1 = 1, sj = 1, sk = 2
†

s1 = 2, s2 = s3 = 1
†

s2 = s3 = 2, s1 = 1

s1 = s3 = 2, s2 = 1

+ − − − − None

− − + + + si = 0, sj = 1, sk = 2

− − + − − s1 = 1, sj = 0, sk = 2

− + + + − s1 = 1

s2 = 1

s2 = s3 = 2, s1 = 1

s1 = s3 = 2, s2 = 1

− + − − − None

Table 5: D-matter candidates for different choices of discrete torsion. Branes that are shown to

be inconsistent are marked with a dagger.

−2n sin
(π

4
(r − s + 2s3 − 1)

)

−2n sin
(π

4
(r − s + 2s1 − 1)

)

−2n sin
(π

4
(r − s + 2s2 − 1)

)
= 0 .

All of the branes we find are T-dual to the branes in section 5, and are related under the

transformation si −→ 2 − si.

E. Other choices of discrete torsion

Table 4 contains the gauge group for the open strings in the 33 and 7i7i sectors. Only

8 of the possible 16 choices of discrete torsion have been listed; the other 8 cases can be

obtained from a permutation of our results. In addition, we have included tables of non-BPS

integrally charged branes with r = 0, since these are possible D-matter candidates [29] in

addition to the torsion branes. The integrally charged brane spectrum for different choices

– 35 –



J
H
E
P
0
4
(
2
0
0
6
)
0
5
2

of discrete torsion is listed in table 5. As noted in section 5.1, a consistent open string

projection requires each of these integrally charged branes to couple to only one twisted

sector. Our results are only stated for 8 of the possible 16 choices of discrete torsion. The

spectrum for the other cases can be obtained through a simple permutation of the branes

in the tables. Branes that are shown to be inconsistent are marked with a dagger.
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O. Bergman, E.G. Gimon and P. Hořava, Brane transfer operations and T-duality of

non-BPS states, JHEP 04 (1999) 010 [hep-th/9902160];
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